A Mathematical Model of OxideÕCarbon Composite Electrode for Supercapacitors
نویسندگان
چکیده
A pseudo two-dimensional model is developed for the general application of supercapacitors consisting of an oxide/carbon composite electrode. The model takes into account the diffusion of protons in the oxide particle by employing the method of superposition. RuO2/carbon system is modeled as a specific example. From the simulation data, it is found that the oxide particle size and proton diffusion coefficient have an enormous effect on the performance at high discharge rate due to the limitation of proton transport into RuO2 particles. With increasing carbon ratio, the porosity of electrode increases, which causes the potential drop in solution phase to decrease. However, excess of carbon lowers the total capacitance because the pseudocapacitance from RuO2 decreases. Finally, the present model successfully provides a methodology to optimize cell configurations and operating conditions. © 2003 The Electrochemical Society. @DOI: 10.1149/1.1593039# All rights reserved.
منابع مشابه
Cost Effective and Scalable Synthesis of MnO2 Doped Graphene in a Carbon Fiber/PVA: Superior Nanocomposite for High Performance Flexible Supercapacitors
In the current study, we report new flexible, free standing and high performance electrodes for electrochemical supercapacitors developed througha scalable but simple and efficient approach. Highly porous structures based on carbon fiber and poly (vinyl alcohol) (PVA) were used as a pattern. The electrochemical performances of Carbon fiber/GO-MnO2/CNT supercapacitors were characteriz...
متن کاملUltrafine MnO2 Nanowire Arrays Grown on Carbon Fibers for High-Performance Supercapacitors
Large-area ultrafine MnO2 nanowire arrays (NWA) directly grew on a carbon fiber (CF, used as a substrate) by a simple electrochemical method, forming three-dimensional (3D) hierarchical heterostructures of a CF@MnO2 NWA composite. As an electrode for supercapacitors, the CF@MnO2 NWA composite exhibits excellent electrochemical performances including high specific capacitance (321.3 F g-1 at 100...
متن کاملAn Electrochemical Investigation of Nano Cerium Oxide/Graphene as an Electrode Material for Supercapacitors
In this paper, the effect of cationic and anionic ion sizes on the charge storage capability of graphene nanosheets is investigated. The electrochemical properties of the produced electrode are studied using cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) techniques in 3M NaCl, NaOH, and KOH electrolytes. Scanning electron microscopy (SEM) is used to characterize the mi...
متن کاملThe Composite Supercapacitor
Inspired by the design of composite materials, a novel composite supercapacitor is proposed comprising an integrated cell with high powerand high energy-related electrode materials so that the composite electrochemical double layer capacitor (EDLC) is the equivalent circuit of a high power EDLC of power P1 and energy E1 and a high energy EDLC of power P2 and energy E2 connected in parallel. A m...
متن کاملHierarchical cellulose-derived carbon nanocomposites for electrostatic energy storage
The problem of energy storage and its continuous delivery on demand needs new effective solutions. Supercapacitors are viewed as essential devices for solving this problem since they can quickly provide high power basically countless number of times. The performance of supercapacitors is mostly dependent on the properties of electrode materials used for electrostatic charge accumulation, i.e. e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2003